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ABSTRACT

A variational analysis is used to derive a mixed P,-DPy (spherical harmonics—double spherical
harmonics) angular approximation to the time-independent monoenergetic neutron transport equation
with linearly anisotropic scattering in one-dimensional planar geometry. This mixed approximation
contains a space-dependent weight factor ce(z) that controls the local angular approximation used:
a(z) = 1 yields the standard P; (diffusion) approximation, «(z) = 0 gives the standard DP,
approximation, and 0 < a(x) < 1 produces a mixed approximation. The diffusion equation obtained
differs from the standard P; diffusion equation only in the definition of the diffusion coefficient. The
variational analysis shows that both the scalar flux and the current are continuous at material interfaces
regardless of the value of a(x). Standard Marshak boundary conditions are also obtained via the
variational analysis. In this paper, we examine the use of this mixed angular approximation to more
accurately treat material interfaces and vacuum boundaries. Numerical results from a mixed-oxide fuel
test problem are presented to demonstrate that significant improvements in accuracy can be obtained
using this method. For this test problem, the mixed P, -DPg angular approximation with o = 0.25 is
found to be more robust than the standard DPy approximation (o = 0) for treating the material
interfaces and vacuum boundaries.

Key Words: Neutron transport, spherical harmonics approximation, double spherical harmonics

approximation, variational analysis, mixed-oxide fuel

1. INTRODUCTION

The spherical harmonics (Py) and double spherical harmonics (DPy) angular approximations to the
planar-geometry neutron transport equation are well established [1]. In the Py approximation, the angular
dependence (1 < p < 1) of the neutron angular flux is expanded in a truncated Legendre polynomial series
that is continuous at all spatial points. However, the angular flux at an internal material interface or at a
vacuum boundary is discontinuous at = 0 when viewed as a function of angle [2]. Therefore, the Py
approximation may give a poor representation of the angular flux at these discontinuities unless a high
order approximation is used. The desire to more accurately treat these discontinuities with low order
approximations motivated the development of the DPy approximation. In the DPy approximation, the
angular dependence of the neutron angular flux is expanded in separate Legendre polynomial expansions
over the half angular ranges 1 < ¢ < 0and 0 < p < 1. As a result, the DPy approximation can more
accurately capture the discontinuity in the angular flux at material interfaces and at vacuum boundaries.
While the DPy approximation offers the possibility of more accurately treating material interfaces and
vacuum boundaries, its use as a practical numerical tool has been limited. The current lack of use is due at
least in part to the inapplicability of the DPy approximation with N > 0 to multi-dimensional geometries.
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Paveri-Fontana and Amster [3] extended the DPg approximation to multi-dimensional geometries using
both a generalization of the usual derivation of the DPy approximation as well as a variational analysis.
Their variational analysis considered only the interior of the system (i.e. no material interface or boundary
terms were included in their variational functional); they proposed material interface and boundary
conditions based on physical arguments. The diffusion equation they derived for the DP; approximation
differed from the standard P; diffusion equation only in the value of the diffusion coefficent. The paper [3]
discusses only the use of either the Py or the DPy approximation in a given region, and no numerical results
were presented to demonstrate the accuracy of the method.

Demény et al. [4] suggested the use of a DPy approximation at vacuum boundaries coupled with a Py
approximation in the interior of a system to improve the accuracy of computed escaping neutron angular
distributions at a boundary. Their Px-DPx Marshak-like boundary conditions were obtained in a heuristic
manner. Nonetheless, they found that extrapolation values computed for the Milne problem converged to
the exact value more rapidly with the order of the angular approximation when the DPy approximation was
utilized at the boundary. In addition, the escaping neutron angular distributions were generally more
accurate with the use of the DPy boundary condition.

In this paper, we derive a mixed P;-DPg angular approximation to the time-independent monoenergetic
neutron transport equation with linearly anisotropic scattering in one-dimensional planar geometry. Our
analysis is based on a variational functional which includes both material interface and boundary terms [2].
The forward and adjoint trial functions utilized in the variational analysis are motivated by the work of
Paveri-Fontana and Amster [3] and Gelbard et al. [5]. We include a weighted average of the P; and DPg
angular approximations in our trial function. This mixed angular approximation contains a user-prescribed
space-dependent weight factor o) that controls the local angular approximation used: a(z) = 1 yields
the standard P; (diffusion) approximation, a(z) = 0 gives the standard DP, approximation, and

0 < a(z) < 1 produces a mixed approximation. As in the work of Paveri-Fontana and Amster, the
diffusion theory obtained from our variational analysis differs from the standard P; diffusion theory only in
the value of the diffusion coefficient. [We note that for a(z) = 1, our diffusion theory is identical with
standard diffusion theory.] Therefore, the mixed P;-DPy diffusion theory requires essentially the same
computational effort as standard P; diffusion theory. Although we consider only planar geometry in this

paper, we believe our analysis can be extended to multi-dimensional geometries using the methodology of
Paveri-Fontana and Amster.

Although potentially much broader in application, we examine in this paper the use of this mixed P;-DPg
approximation to more accurately treat both material interfaces and vacuum boundaries. Our approach is to
use the P; approximation everywhere in the system except possibly at material interfaces and/or vacuum
boundaries. The DPy or a mixed P;-DPg approximation with 0 < «(z) < 1 is used within the order of a
mean free path (mfp) around material interfaces and near vacuum boundaries. Our numerical results
demonstrate that this method can significantly improve accuracy near these material interfaces and vacuum

boundaries. In particular, we apply this methodology to a mixed-oxide fuel test problem that possesses
significant material property discontinuities.

The remainder of this paper is organized as follows. In Section 2, we outline the variational derivation of
the mixed P1-DPy approximation. Next, we present numerical results from a mixed-oxide test problem in
Section 3. We offer concluding remarks and suggestions for future work in Section 4.
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2. VARIATIONAL ANALYSIS

In this section, we outline the variational derivation of the mixed P;-DP approximation for a piecewise
homogeneous medium. We consider a system V' consisting of  homogeneous slab material regions V;
(1 <4 < I) with boundaries at z = 0 and z = L and internal material interfaces

Vi =Vi[1V; . (1)

We consider the following time-independent monoenergetic neutron transport problem with linearly
anisotropic scattering in the one-dimensional system V':

0 , — 1
M@W(m,n)+0§‘1’(w,#)=/lai () ¥ (2, 1) di' + 5Q() s z€Vi, -1<p<1, (@)

lim ¥ (x+ep,p) = im ¥ (z—ep,p) , z€dV;; , (3)
e—0T e—0F '
TO0,u) =0 () , 0<p<l, @)
‘I’(Laﬂ)=q’(La*P) ? *1§M<U ) (5)
where the differential scattering cross section is given by
i n_l,; 3, 6
Oy (Juﬂf"') - 2050 + 20.91”# ’ (6)

and WO (1) is a prescribed incident angular flux. The notation in Egs. (2)—(5) is standard neutronics

notation. For the transport problem Egs. (2)—(5), we would like to calculate the scalar functional Z defined
as

I
=3 L[ 0" (@) W (2, 1) | @

where o* () is a prescribed function. If o* (z) is a physical cross section in material zone V; and zero
elsewhere, then the functional Z represents the corresponding reaction rate in material zone V;.

To variationally approximate 7 [¥], we consider the associated functional 7 [1, 1*] defined by [2]:
T [, "] = T[]
1 1 . 8 i 1 ; . . ) 1
_Z[ f 'l/) |:|u'_¢+0't¢—f T, (uaﬂ)w(ﬁ,#)dy - —Q(m):! dy,dil,'
v; J-1 oz -1 5

- 13t i | witl i ikl
+§;/_1u(¢ + 9 )(¢—¢ )d:u
~ [l @) + 9 (0,-] [90,1) ~ 2 )]

+/_O1 p* (L, p) [ (L, p) — o (L, —p)] dpe . (®)

Here We have denoted by 7* and 9** the values

,t‘[){*):', (37,,(1,) — { }'ime—)0+ Tl)(*) (:C + E,Ub,;l.) b T E 8V;.j' 1 _1 S Ju’ < 0 ? (9)

lim,_, o+ ™) (2 — ep, ) zedVy, 0<p<l,
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i.e. the functions v (z, ) and ¥* (z, ) at the point z in an e-neighborhood of the internal material interface
dV;;, but in material zone V;. The variational functional .7 is a one-dimensional planar-geometry version
of a functional previously used to derive multi-dimensional Py [6] and simplified Py [7] approximations.

We can readily show that the functional 7 has the following properties:
1. If 9 = U, where V¥ satisfies the forward transport problem given by Egs. (2)—(5), then J = Z for any
choice of ™.

2. Ifp = ¥ 4 0¥ and o)* = ¥* 4 6™, where ¥ satisfies the forward transport problem Egs. (2)—(5),
W™ is an arbitrary function, and ¥ and §\W* represent small but arbitrary O (d) variations, then
J =T+ 0(9).

3. If p = ¥ 4+ 0¥ and ¢* = ¥* 4 6™, where W satisfies the forward transport problem Egs. (2)—(5),
W* satisfies the adjoint transport problem given by

0 * Ty * ! i * ®
—ngoV" (2, 4) + 0¥ (xqu)zﬁlas (u, 1) O (2, p) dp' + 0™ (2) , €V, (10)

lim ¥* (z +ep, p) = lim " (z —ep,p) , = €9V, (11)
e—~0+ e—~07F

T*(0,pu)=0, -1<pu<0, (12)

Q*(L,M)Z\D*(L,—#) , 0<pu<1, (13)

and 0¥ and §7* represent small but arbitrary O (J) variations, then J = Z + O (4?).

Thus, given approximations to the forward and adjoint angular fluxes, ¥ and U'*, that have errors of O (d),
the functional 7 approximates the functional Z with an error of O (62). In the language of the calculus of
variations, the functional 7, Eq. (8), is a Lagrangian function for the system and Egs. (2)<(5) and

Eqgs. (10)-(13) are the Euler equations [2].

The results above imply that ¢ = ¥ and 9* = ¥* is the only stationary point of the functional 7. The
requirement that the functional 7 be stationary for small but arbitrary variations in ¥ and W* is equivalent
to the forward and adjoint transport problems, Egs. (2)—(5) and Eqgs. (10)—(13). Only the true forward and
adjoint transport solutions can exactly satisfy this requirement. However, if we assume approximate forms
(trial functions) for the forward and adjoint solutions and require that the functional be stationary with
respect to variations of these approximate functions, then equations can be derived that yield approximate
solutions to the forward and adjoint transport problems.

It should be noted that the term 9* (0, —u) in the boundary term of Eq. (8) can be dropped, and the
functional J remains an O (62) approximation to Z provided 1 = ¥ + O (§) and * = ¥* + O (4).
However, including this term leads to a simpler analysis that yields Marshak-like boundary conditions;
excluding it leads to different (non-Marshak) boundary conditions. (This was initally observed in the

variational derivation of the P; approximation to general-geometry multigroup transport problems by
Rulko et al. [6].)

To proéeed with the variational analysis, we must formulate approximate forms (trial functions) for the
forward and adjoint angular flux. The P; representation of the forward angular flux is given by [2]

1 3
@($>#):§¢0($)+§u¢’1($) , 1<p<l, (14)
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where ® () is the neutron scalar flux and ®1 (z) is the neutron current. Thus, the Py representation of the
angular flux is linearly anisotropic in angle. The DPq representation of the angular flux is given by [2]

\p(mju)ﬁ{\lﬂ"(ﬂ:), g<p=sl,

e O e L

Thus, the DPy representation of the angular flux is isotropic in angle in each of the half angular ranges
—1 < p<0and 0 < p < 1. Following Paveri-Fontana and Amster [3] and Gelbard et al. [5], we note that
@ (z) = U7 (z) + U (z) and 1 (z) = £ [ (z) — U~ (z)]. Then we can rewrite Eq. (15) as

1 3
¥ (o,0) = 580 (a) + 5 f (W) @1 (x) , 1< p<l (16)
where the function f (p) is given by

. B<psi,
, =1 < <0,

bt bl

f(p) = { . (17)

The forward trial function for the angular flux that we use in our variational analysis is a weighted average

of the P; and the DP representations, Eqs. (14) and (16), which we refer to as a mixed P1-DPy
approximation. This trial function is given by

b (@m) = 500(@) + 5K (@) i (@) , L<pu<1, 19)

where the function K (z, u1) is given by

K(x,#):{§[1~a(m)]+a(:c)ﬂ, T v
3

l-a@)+a(@p, -1<u<0,

and 0 < a(z) < 11is a user-prescribed space-dependent weight factor. For a (z) = 1, Eq. (18) is
equivalent to the Py approximation, and for « (x) = 0 it is equivalent to the DPy approximation. Setting

0 < a(z) < 1 yields an intermediate approximation. For the adjoint trial function, we use an analogous
form:

P (o,0) = 565 () + 3K (@, 1 () , 1<p<1 . o)

Inserting the trial functions, Eqgs. (18) and (20), into the functional 7 and performing all possible angular
integrations, we obtain the following reduced form of 7:

J [QSO ("L‘) 7@61 (‘(B) ’ ¢'S (33) 7¢'){ (’E)] =

I

> [ o @) o (a) do

A

I - .
. va 4% (2) [ ¢1 (z) + oo () — Q(z)

dx
=1
3 Lo [1d —
52, |50 @+ o @) )] s
-1
473 [45 @ + 5 @) [# (@) - 447 ()]
:',:1
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I

+§ [#17 (@) + 671 @] [9h (2) - 657 ()]

1

|
it

&
Il

— 5 (0) Lll@ﬁo (0) + -3"951 (0) — /01 ,UII’O (1) d,u]

a0 -|(1-ewP) e smlao
where _ _ _
Oao = Of — 050 »
and

7 @) = {311 -a@P +20 - a@la() + [« @) ] of -y

(21)

(22)

(23)

If we calculate the first variation 6.7 of the reduced functional 7 with respect to independent variations of

the unknown functions d¢§ () and d¢% () and set this equal to zero, we obtain the forward P,-DPy
0 2 q

equations
d )
—¢1(z) + oo (2) = Q(a) , s € Vi ,

and

—

ga%( )+031($)¢1{1’)=0, =R

with material interface conditions
6 () = ¢ (z) , © € Vi
i (2) =it (@) , &€ WViapa ,
a Marshak boundary condition at = = 0,
1 0
1O+ 360 = [ w20 |
and the reflecting boundary condition at z = L

¢1 (L) =0 .

(24)

(25)

(26)

27

(28)

(29)

Eqgs. (26) and (27) demonstrate that the scalar flux and current are continuous at a material interface for any

value of the weight factor « (z).

Eqgs. (24)~(29) can be rewritten as a diffusion theory by eliminating ¢ (z) to obtain

) d : ‘
~ 2D () -0 (4) + ohodo (2) = Q(2) , T € Vi |

with the material interface conditions

Ph () = ZH (x) , € Viip1 ,

i d ; i d ;
D' () =4} () = D" (2) T 45* () , &€ Vi
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a Marshak boundary condition at z = 0,

1 d

k 1 ; 0
9O =500 0 O = [ () (33)

and the reflecting boundary condition at z = L,

d
%fﬁo (L)=0, (34)

where the diffusion coefficient D* (z) is given by

D“’(m):%,mevg. (35)
30 (z)

The expression for the diffusion coefficient given by Eq. (35) interpolates quadratically [in « (z)] between
the DPy and the Py values of the diffusion coefficient. Egs. (30)—(35) are identical to standard P; diffusion
theory with the exception of a slightly different diffusion coefficient [for « () < 1]. Thus, the mixed
P1-DPy diffusion approximation can be readily solved numerically using standard diffusion discretizations
and solvers with essentially no additional computational expense.

3. NUMERICAL RESULTS

In this section, we apply the mixed P;-DPg approximation derived in Section 2 to a mixed-oxide (MOX)
fuel test problem. MOX fuel assemblies possess significantly different neutronic properties than UO- fuel
assemblies [7]. Namely, the thermal absorption and fission cross sections in MOX assemblies are much
higher than in UO; assemblies. As a result, the thermal flux is much lower in the MOX assemblies as
compared to the UO; assemblies, while the power production is much higher. The stronger absorption in
MOX assemblies and the large cross section discontinuities at MOX/UO; assembly interfaces can be
challenging for the diffusion approximation.

Our one-group fixed-source test problem has two material regions whose cross sections are representative
of the thermal group of mixed-oxide and UO; fuel assemblies. This one-dimensional test problem is based
on the multi-dimensional OECD/NEACRP-L-336 C5 mixed-oxide benchmark problem proposed by the
Nuclear Energy Agency Committee on Reactor Physics. [8]. The geometry is shown in Figure 1, where the
dimensions of the “assemblies” correspond to those specified in the benchmark. The
assembly-homogenized cross section values were obtained by homogenization of the specified pin cell
cross sections [7] and are given in Table I. We note that this test problem includes only isotropic scattering.
The higher power production in the MOX fuel region is represented as a larger fixed source value.

Reflecting MOX U0, Vacuum

+— 10.71 — — 2142 —

Figure 1. MOX Test Problem Configuration
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Table I. Test Problem Material Properties

Region ay T Tq Q

MOX | 0.83333 | 0.60272 | 0.23061 | 1.0
UO, | 0.83333 | 0.74091 | 0.09242 | 0.65

We use this test problem to assess the improvement in accuracy that can be obtained using the mixed
P1-DP, approximation at material interfaces and vacuum boundaries. Since we are interested in assessing
the accuracy improvement obtained using our mixed angular approximation, we simulate this problem
using a fine spatial mesh of less than 0.001 mfp per zone to minimize spatial discretization errors. We
compare the computed scalar flux values to a reference P;5 solution obtained using a very fine spatial mesh
of less than 0.0001 mfp per zone. To evaluate the error in the computed solution, we compute the
root-mean-squared (RMS) relative error in the scalar flux across several edit regions of the problem: the
total problem, the interior of the left MOX region, the interior of the right UO3 region, 3 mfp on either side
of the MOX/UQ: interface, and 3 mfp near the vacuum boundary. In addition, we compute the error in the
absorption rate for both the MOX and the UO; regions. The accurate computation of the reaction rate in
each region is important, since the reaction rate in a region is often the desired result (e.g. for determining
the power production).

We plot the standard Py scalar flux and the reference P;5 scalar flux in Figure 2 along with the percent
relative error in the Py scalar flux in Figure 3. We note that the error in the Py scalar flux in the interior of
each region (away from the material interface and the vacuum boundary) is small. The error in the Py
scalar flux near the material interface between the MOX and the UOs region and near the vacuum
boundary is evident. The relative errors approach 1-2% near the material interface and near the vacuum
boundary are as large as 10%. The edit region RMS relative errors for the standard P; approximation
[a(x) = 1 for all z] with Marshak vacuum boundary conditions are given in Table II. The errors range
from a few hundredths of a percent in the interior of the MOX and UO; regions to approximately one
percent near the vacuum boundary. The total error is dominated by the error near the material interface and
the vacuum boundary. The errors in the interior of the MOX and UO;, regions are significantly smaller than
near the material interface and the vacuum boundary.

In Table III, we give the percent relative error in the absorption rate (compared to the reference Py5
solution) for the P approximation. The P approximation over-predicts the absorption rate in the MOX
region by about 0.1% and underpredicts the absorption rate in the UO, region by about 0.3%.

We next present a series of calculations in which we treat the MOX/UO; material interface and the vacuum
boundary using the mixed P1-DPj angular approximation. For simplicity, we simultaneously vary the
width of the mixed P;-DPy region from 0 to 2 mfp on each side of the material interface and from 0 to

2 mfp near the vacuum boundary. We treat the mixed approximation region as either an average of the Py
and DPg approximations (with oo = 0.5 and 0.25) or as the standard DPg approximation (e = 0). For each
edit region, we compute an error reduction factor (ERF) defined as the ratio of the RMS relative error in the
edit region for the given angular approximation to the standard P; RMS relative error in the edit region.
Therefore, a small value for the ERF is desirable; an ERF greater than unity implies that the error actually
increased. We also define the set of optimal ERFs as the set with the smallest weighted average ERF, where
each edit region ERF is weighted by the error in the region to determine the average.
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Scalar Flux
o

0 1 L 1 1 1 : VI
0 5 10 15 20 25 30

X

12 T T T T T T

Percent Relative Error

_6 1 1 1 1 1 1
0 5 10 15 20 25 30

X .
Figure 3. Scalar Flux Error for P; Approximation
Figures 4 and 5 plot the RMS relative error in the scalar flux for the mixed P;-DP, angular approximation
with o (z) = 0.5 and « (z) = 0.25 in the mixed region, respectively, for each of the five edit regions as a

function of the number of mfp in the mixed regions. A mixed region width of zero corresponds to the
standard P, case. In each case, the curves exhibit the same general trends. Namely, the total error and the
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Table I1. Standard P; Approximation Errors and Optimal Error Reduction Factors

Py RMS Percent Relative Error Optimal Error Reduction Factors

Region in Scalar Flux a(r)=05 | a(z)=025 | a(z)}=0.0
Total 0.9542 0.714 0.477 0.424
MOX 0.0302 1.159 1.281 1.328
U0, 0.0603 1.114 1.421 1.566
Interface 0.3174 0.695 0.440 0.311
Boundary 0.8973 0.713 0.472 0.422
Optimal mixed width (mfp) 0.700 0.400 0.225

Table III. Regional Absorption Rates and Percent Relative Errors

Percent Relative Error in Absorption Rate

Region | Exact Rate | P a(z)=05 | a(z)=025 | a(z)=0.0

MOX 11.0147 0.116 0.044 0.006 -0.008
U0O, 12.6663 | -0.290 -0.107 -0.012 0.019

errors near the material interface and the vacuum boundary are reduced by increasing the mixed region
width to a certain value, at which point further increasing the width degrades the error reduction. In each
case, the error in the interior of the MOX and UO; regions actually increases monotonically when using
the mixed P,-DP, approximation, although the error in those regions remains small. The optimal ERF set
for the & (z) = 0.5 mixed P;-DP approximation occurs for a mixed region width of 0.7 mfp and the
optimal set for the « (z) = 0.25 case occurs for a mixed region width of 0.4 mfp. Both of these optimal
ERF sets are given in Table II. The total, interface, and boundary ERFs for the mixed P;-DPg
approximation with « (z) = 0.25 are clearly smaller than those for the « (z) = 0.5 case. Conversely, the
ERFs for the interior of the MOX and UOj; regions are greater than unity and larger for the  (z) = 0.25
case. Thus, the error in the total, interface, and boundary edit regions is decreased by using « (z) = 0.25
instead of « (z) = 0.5, while the error in the interior edit regions is increased. We note that with « (z) =
0.25, the RMS relative errors at the material interface and near the boundary are reduced by roughly a
factor two. The total error is reduced by a similar amount. The error in the interior of the MOX region is
increased by approximately 28% and in the interior of the UO5 region by approximately 42%. However,
the error in the interior of these regions remains small.

Figure 6 plots the RMS relative error in the scalar flux for the DPy angular approximation [e (z) = 0 in the
mixed region] for each of the five edit regions as a function of the number of mfp in the mixed region.
These curves follow the same general trend as for the mixed P1-DP case, with a few differences. The
optimal error reduction factor set for this case occurs at 0.225 mfp as opposed to 0.4 mfp for the o (z) =
0.25 P1-DPy case. The optimal DPy error reduction factor set is given in Table II. We see that the optimal
DPg error reduction factors for the total, interface, and boundary regions are even smaller than those
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obtained using the mixed P;-DPg approximation with « (z) = 0.25. The ERFs in the MOX and UO-
regions are greater than unity and even larger. Figure 7 plots the total error reduction factor as a function of
the interface/boundary width for both the mixed P;-DPy and the DPy approximation. The mixed P1-DPg
approximation, particularly with c (x) = 0.25, exhibits the largest range over which significant error
reduction occurs. In addition, we note that the standard DP( approximation method appears more
susceptible to causing an overall degradation in accuracy (i.e. the error reduction factor is greater than
unity for values of the mixed region width greater than approximately 1 mfp). Thus it appears, at least for
this test problem, that the mixed P;-DPy approximation is more robust than the standard DPg
approximation for treating material interaces and vacuum boundaries.

14 T T T T T L '

Total

MOX
1.2 Interface - ]

§[3 A
! ndlar e

0 R, m e m e ; ; ; ;

0.5 P;-DP, Scalar Flux RMS Percent Relative Error

=]
o
[
Gh
<o
n
o
N
o

1 125 LS - ETS 2

o

o = 0.5 P;-DP, Region Width (mfp)

Figure 4. Edit Region Errors for o (z) = 0.5

Comparing the computed regional absorption rates from Table III, we see that the most accurate absorption
rates are obtained using the mixed P;-DP approximation with « (z) = 0.25 in the mixed region. For that
case, the error in the absorption rate is decreased by a factor of appoximately twenty in the MOX region
and a factor of twenty-five in the UO3 region.

Finally, in Figure 8 we plot the percent relative error in the scalar flux across the slab for the P;
approximation and for the mixed P1-DPj approximation with « (z) = 0.25 and « (z) = 0.0 (DPg
approximation) using the respective optimal mixed region width. Significant accuracy improvements have
clearly been obtained near the material interface and the vacuum boundary when using the mixed P;-DPy
approximation.
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4. CONCLUSIONS

In this paper, we derived via a variational analysis a mixed P;-DPj angular approximation to the
time-independent monoenergetic neutron transport equation with linearly anisotropic scattering in
one-dimensional planar geometry. This variational analysis shows that both the scalar flux and the current
are continuous at material interfaces. Standard Marshak boundary conditions are also obtained via the
variational analysis. The mixed angular approximation contains a space-dependent weight factor « () that
controls the local angular approximation used. The diffusion theory obtained is identical to standard P,
diffusion theory with the exception of the diffusion coefficient. The diffusion coefficient in the mixed
P1-DPy approximation contains the term « (z) which effectively interpolates between the standard P; and
DPq definitions of the diffusion coefficient. The mixed P; diffusion theory requires essentially the same
computational work as standard P; diffusion theory.

We applied the mixed P1-DP diffusion theory to the solution of a one-dimensional, two-region
mixed-oxide fuel test problem. Our approach was to use the standard P; approximation everywhere in the
system except near the material interface between the MOX and UOs regions and near the vacuum
boundary. In those regions, we used either the mixed P,-DPy approximation or a standard DPy
approximation. The results show that more accurately treating the material interfaces and boundary
conditions using these approximations gives significant accuracy improvements. The improvement in
accuracy observed when using the standard DP approximation is slightly better than that obtained using
the mixed P;-DPy approximation with « (z) = 0.25. However, the mixed P;-DP approximation with

« (z) = 0.25 appears more robust than the standard DP approximation and is therefore deemed the
preferable choice.

Several areas of future work exist that we would like to pursue. First, the mixed P1-DPy diffusion theory
should be applied to a broader range of problems to determine if the results shown in this paper are
representative. If so, it would be useful to extend the mixed P;-DPy variational analysis to multiple
dimensions following the approach of Paveri-Fontana and Amster [3]. Then the efficacy of treating
material interfaces and vacuum boundaries using the mixed P;-DPy approximation in multi-dimensional
geometries could be evaluated. Next, we would also like to extend the variational analysis to obtain the
mixed P3-DP; approximation in planar geometry. If this approximation demonstrates improved accuracy,
then we would like to consider the use of the mixed angular approximation treatment at material interfaces
and vacuum boundaries with the simplified P3 approximation in multiple dimensions. Finally, we would
also like to consider using a similar methodology to a derive a mixed P;-Py angular approximation. In this
manner, it may be possible to take advantage of the improved accuracy of the Py approximation while
avoiding its inherent scalar flux discontinuities present at material interfaces.
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